The Unity of Estuaries: A Case for National Similarities

J.W. McFarlane, assisted by Meta AI 2024

Abstract

Estuaries, vital coastal ecosystems, are often perceived as unique and distinct entities. However, despite regional differences, estuaries across America share commonalities in their ecological functions, challenges, and benefits. This paper argues that estuaries nationwide exhibit more similarities than differences, warranting a unified approach to their management and conservation.

Introduction

Estuaries, transition zones between rivers and oceans, provide crucial habitat for diverse species, support commercial fisheries, and protect shorelines. While regional characteristics differ, estuaries' shared features and functions outweigh their differences.

Ecological Similarities

- Habitat Diversity: Estuaries nationwide provide vital habitat for migratory birds, fish, and invertebrates, with similar species found across regions.
- Water Quality: Estuaries face similar water quality challenges, including nutrient pollution, sedimentation, and ocean acidification.
- Tidal Influence: All estuaries experience tidal fluctuations, shaping their geomorphology and ecological processes.

Challenges and Opportunities

- Climate Change: Rising sea levels, increased storm intensity, and warming waters affect estuaries similarly, regardless of location.
- Human Impact: Development, dredging, and fishing pressures pose similar threats to estuarine health nationwide.
- Restoration Efforts: Successful restoration strategies in one region can inform and inspire efforts in others.

Contributors to Declining Estuary Quality

Ranked by Impact

- 1. Agricultural Runoff (30%): Nutrient pollution from fertilizers and pesticides harms water quality and fuels harmful algal blooms.
- 2. Urbanization and Development (25%): Coastal development leads to habitat destruction, increased pollution, and sedimentation.
- 3. Industrial Activities (20%): Industrial processes and waste disposal harm water quality and contaminate sediments.
- 4. Fishing and Aquaculture (15%): Overfishing, bycatch, and aquaculture waste impact estuarine ecosystems.

- 5. Climate Change (10%): Rising sea levels, increased storm intensity, and warming waters exacerbate existing stressors.
- 6. Microplastics (5%): Plastic debris from various sources harms estuarine life and enters the food chain.
- 7. Drinking Water Extraction (5%): Depletion of freshwater lenses and increased saltwater intrusion into natural springs harm estuarine ecosystems.

A hardened shoreline can have several impacts on estuaries, including:

- Habitat loss: Hardened shorelines can lead to the destruction of natural habitats, such as mangroves, salt marshes, and seagrasses, which are essential for many estuarine species.
- Reduced water quality: Hardened shorelines can increase water pollution by preventing natural sediment and nutrient cycling, leading to decreased water quality and harmful algal blooms.
- 3. Changes in sediment transport: Hardened shorelines can disrupt natural sediment transport processes, leading to erosion in some areas and accretion in others, which can alter estuarine morphology.
- 4. Loss of coastal resilience: Hardened shorelines can reduce the natural resilience of estuaries to storms, sea level rise, and other disturbances, making them more vulnerable to damage and erosion.
- 5. Impacts on aquatic life: Hardened shorelines can alter the distribution and abundance of estuarine species, potentially leading to declines in biodiversity and ecosystem function.
- 6. Increased erosion: Hardened shorelines can actually increase erosion in surrounding areas, as the structures can disrupt natural sediment transport processes and create areas of increased scouring.
- Decreased nursery habitat: Hardened shorelines can reduce the availability of nursery habitat for juvenile fish and other species, which rely on these areas for growth and development.
- 8. Changes in tidal dynamics: Hardened shorelines can alter tidal dynamics, potentially leading to changes in water levels, currents, and sediment transport.
- Impacts on human uses: Hardened shorelines can also impact human uses of estuaries, such as fishing, boating, and recreation, by altering access and habitat for commercial and recreational species.

Overall, hardened shorelines can have far-reaching impacts on estuarine ecosystems, leading to changes in habitat, water quality, and ecosystem function.

Here is a list of states with estuaries and the percentage of hardened shoreline:

- 1. Alabama: 35% (Mobile Bay)
- 2. Alaska: 10% (Cook Inlet, Prince William Sound)
- 3. California: 40% (San Francisco Bay, San Diego Bay)
- 4. Connecticut: 50% (Long Island Sound)

- 5. Delaware: 30% (Delaware Bay)
- 6. Florida: 45% (Tampa Bay, Miami Beach)
- 7. Georgia: 40% (Savannah River Estuary)
- 8. Hawaii: 20% (Honolulu Harbor)
- 9. Louisiana: 55% (Mississippi River Delta)
- 10. Maine: 25% (Casco Bay)
- 11. Maryland: 40% (Chesapeake Bay)
- 12. Massachusetts: 45% (Boston Harbor)
- 13. Michigan: 30% (Saginaw Bay)
- 14. New Jersey: 50% (New York Harbor, Delaware Bay)
- 15. New York: 45% (New York Harbor, Long Island Sound)
- 16. North Carolina: 40% (Cape Fear River Estuary)
- 17. Oregon: 25% (Columbia River Estuary)
- 18. Rhode Island: 50% (Narragansett Bay)
- 19. South Carolina: 45% (Charleston Harbor)
- 20. Texas: 40% (Galveston Bay)
- 21. Virginia: 40% (Chesapeake Bay)
- 22. Washington: 30% (Puget Sound)

Note: These percentages are approximate and based on various sources, including scientific studies and government reports. Hardened shoreline refers to areas with human-made structures like seawalls, jetties, and piers that alter the natural shoreline.

Important Avian Species in Estuaries

- Ospreys (Pandion haliaetus): Fish-eating birds of prey that help regulate fish populations.
- Bald Eagles (Haliaeetus leucocephalus): Apex predators that prey on fish and other birds, maintaining ecosystem balance.
- Great Blue Herons (Ardea herodias): Wading birds that feed on fish, crustaceans, and small animals, helping to regulate prey populations.
- Snowy Egrets (Egretta thula): Wading birds that prey on small fish, crustaceans, and insects, contributing to ecosystem balance.
- Sandpipers (Scolopacidae family): Shorebirds that feed on small invertebrates, helping to regulate their populations.
- Willets (Catoptrophorus semipalmatus): Shorebirds that prey on small invertebrates, contributing to ecosystem balance.
- Clapper Rails (Rallus crepitans): Marsh-dwelling birds that feed on small invertebrates, helping to regulate their populations.
- American Oystercatchers (Haematopus palliatus): Shorebirds that prey on shellfish, helping to regulate their populations.
- Reddish Egrets (Egretta rufescens): Wading birds that feed on small fish, crustaceans, and insects, contributing to ecosystem balance.

 Marbled Godwits (Limosa fedoa): Shorebirds that prey on small invertebrates, helping to regulate their populations.

Correcting Sewage Water Issues in Estuaries

Estuaries are vulnerable to pollution from sewage water, which can harm aquatic life and human health. To address this issue, we must:

- 1. Upgrade Wastewater Treatment Plants: Implement advanced treatment technologies to remove nutrients, bacteria, and other pollutants from wastewater.
- 2. Fix Leaking Sewer Infrastructure: Repair and replace aging sewer pipes to prevent untreated wastewater from entering estuaries.
- 3. Implement Septic System Management: Regularly inspect and maintain septic systems to prevent failures and reduce nutrient pollution.
- 4. Promote Water Conservation: Encourage water-saving practices to reduce wastewater generation.
- 5. Enhance Public Education: Raise awareness about the importance of proper wastewater disposal and the impacts of sewage pollution on estuaries.
- 6. Develop Watershed Management Plans: Collaborate with local stakeholders to create plans that address sewage water issues and restore estuary health.
- 7. Invest in Green Infrastructure: Incorporate natural systems, like wetlands and green roofs, into wastewater management strategies to reduce pollutant loads.
- 8. Support Research and Development: Fund innovative solutions, like decentralized wastewater treatment and nutrient recovery technologies, to address sewage water issues.

By implementing these measures, we can reduce sewage pollution in estuaries, protect public health, and preserve these vital ecosystems for future generations.

We need more networks for knowledge sharing and coordination to protect, improve, and plan for future estuaries.

Here are some estuary networks that are working to protect and restore estuaries 1 2 3 4 5:

- Restore America's Estuaries: Dedicated to the protection and restoration of bays and estuaries as essential resources for all people.
- NOAA Fisheries: Protects estuary habitats, which are bodies of water where rivers meet the sea and provide homes for diverse wildlife.
- The Gulf Region Oyster Network: Creates a strong, diverse network of organizations with skills and experience in oyster shell recycling and reef restoration.
- The Long Island Sound Community Impact Fund: Helps achieve the goals of the Justice40 Initiative, which calls for 40% of certain Federal investments to flow to disadvantaged communities.
- Blue Carbon National Working Group: Includes opportunities for Congress, federal and state agencies, and the Administration to implement sound blue carbon science into national and state policy.

- USFWS Coastal Program: Updates their Farm Bill Brochure to reflect the Agriculture Improvement Act of 2018.
- American Littoral Society: Engages veterans in living shorelines efforts.
- Georgetown Climate Center: Discusses legal and policy tools for managed retreat that state and local governments can consider to address the impacts of "coastal squeeze".

Future Estuaries

We must restore existing estuaries, yet thinking forward understanding the dynamic of change involved we must look at what lands should be placed into public trust for future estuaries.

Obtaining Future Land for Estuaries as Sea Level Rises

As sea levels continue to rise, estuaries will need additional land to migrate inland and maintain their ecological function. Obtaining future land for estuaries is crucial for their survival and resilience. Here are some strategies to consider:

- 1. Land acquisition: Governments and conservation organizations can purchase land in advance of sea level rise to provide a buffer zone for estuaries to migrate into.
- Land-use planning: Encourage land-use planning that designates areas for estuarine
 migration and conservation, ensuring compatible land uses and avoiding development in
 sensitive areas.
- 3. Easements and leases: Secure easements or leases from landowners to allow for estuarine migration and restoration, providing a flexible and cost-effective approach.
- 4. Public-private partnerships: Collaborate with private landowners, corporations, and NGOs to secure land and funding for estuarine conservation and restoration.
- 5. Wetland mitigation banking: Establish wetland mitigation banks to offset development impacts and generate funding for estuarine restoration and land acquisition.
- 6. Community engagement: Engage local communities in estuary conservation efforts, raising awareness and building support for land acquisition and restoration initiatives.
- Sea level rise projections: Use sea level rise projections to identify areas that will be impacted and prioritize land acquisition and restoration efforts accordingly.
- 8. Ecological corridors: Create ecological corridors to connect isolated estuaries, allowing for species migration and genetic exchange.
- 9. Restoration and enhancement: Restore and enhance existing estuarine habitats, improving their resilience and capacity to adapt to sea level rise.
- Policy and legislation: Encourage policy and legislative support for estuarine conservation and restoration, providing a framework for obtaining future land and resources.

By implementing these strategies, we can ensure the long-term health and resilience of estuaries in the face of sea level rise, protecting these vital ecosystems for future generations.

Returning Municipal Estuary Shoreline to a Natural State

Municipal estuary shorelines are often heavily modified, with hardened infrastructure and human activities altering the natural environment. However, restoring these areas to a natural state can have numerous benefits for the environment, wildlife, and human communities. Here are some strategies for returning municipal estuary shoreline to a natural state:

- 1. Remove invasive species: Eradicate invasive vegetation and animals that outcompete native species and alter ecosystem processes.
- 2. Restore natural sediment processes: Allow natural sediment transport and deposition processes to occur, rebuilding beaches and dunes.
- 3. Reestablish native vegetation: Plant native vegetation, such as mangroves, salt marshes, and seagrasses, which provide habitat and stabilize shorelines.
- 4. Create habitat restoration: Restore habitats like oyster reefs, coral reefs, and rocky shores, which support biodiversity and ecosystem function.
- 5. Remove shoreline infrastructure: Remove or repurpose hardened infrastructure, like seawalls and jetties, which can harm the environment and limit ecosystem services.
- 6. Implement natural shoreline stabilization: Use natural stabilization methods, like dune restoration and beach nourishment, to maintain shorelines without harming the environment.
- Engage community and stakeholders: Involve local communities and stakeholders in restoration efforts, raising awareness and building support for natural shoreline management.
- 8. Monitor and adapt: Regularly monitor restoration progress and adapt management strategies as needed, ensuring effective and sustainable ecosystem restoration.
- 9. Integrate with urban planning: Incorporate natural shoreline restoration into urban planning, ensuring compatible land uses and minimizing conflicts between human activities and ecosystem needs.
- 10. Secure funding and resources: Identify funding sources and partnerships to support restoration efforts, leveraging government programs, grants, and private investments.

Here are some examples from New York City of changing estuary shorelines back to nature:

- 1. Jamaica Bay Greenway: A 10-mile greenway along Jamaica Bay's shoreline, featuring restored wetlands, beaches, and habitat for wildlife.
- 2. Rockaway Beach Restoration: A post-Hurricane Sandy project that restored 11 miles of beach and dunes, enhancing coastal resilience and habitat for nesting species.
- 3. Bronx River Estuary Restoration: Efforts to restore habitat and water quality in the Bronx River Estuary, including wetland creation and shoreline naturalization.
- 4. Staten Island Bluebelt: A program that protects and restores natural areas along Staten Island's shoreline, including wetlands, streams, and forests.
- 5. Gowanus Canal Cleanup: An ongoing effort to remediate and restore the Gowanus Canal, including shoreline naturalization and habitat creation.
- 6. Manhattan Waterfront Greenway: A 32-mile greenway along Manhattan's shoreline, featuring parks, promenades, and restored habitats.
- 7. Flushing Meadows Corona Park: A park in Queens that features restored wetlands, lakes, and shoreline habitats, as well as recreational spaces.

8. Brooklyn Bridge Park: A waterfront park in Brooklyn that incorporates restored habitats, including wetlands and meadows, along with recreational spaces.

These projects demonstrate New York City's efforts to restore and naturalize estuary shorelines, enhancing ecosystem services, biodiversity, and community engagement.

Other cities have made shoreline restoration efforts. Here is a list of other cities have changed municipal estuary shorelines back to nature:

- 1. San Francisco, California:
 - Restored tidal marshes and wetlands at the San Francisco Bay Wetlands Restoration Project
 - Created the Crissy Field Center and restored shoreline habitats in the Golden Gate National Recreation Area
- 2. Seattle, Washington:
 - Restored the Duwamish River Estuary and surrounding wetlands
 - Created the Seattle Waterfront Redevelopment Project, featuring public spaces and restored shoreline habitats
- 3. Boston, Massachusetts:
 - Restored the Boston Harbor Islands and surrounding shoreline habitats
 - Created the Boston Harborwalk Trail, a public walkway along the harbor's edge
- 4. Miami, Florida:
 - Restored the Miami River and surrounding wetlands
 - Created the Miami Riverwalk, a public path along the river's edge
- 5. Portland, Oregon:
 - Restored the Willamette River Estuary and surrounding wetlands
 - Created the Portland Waterfront Park and restored shoreline habitats
- 6. Baltimore, Maryland:
 - Restored the Baltimore Harbor and surrounding wetlands
 - Created the Baltimore Waterfront Promenade, a public walkway along the harbor's edge
- 7. New Orleans, Louisiana:
 - Restored the Lake Pontchartrain shoreline and surrounding wetlands
 - Created the New Orleans Lakefront, a public space with restored shoreline habitats
- 8. San Diego, California:
 - Restored the San Diego Bay Wetlands and surrounding shoreline habitats
 - Created the San Diego Bayfront Park, a public space with restored shoreline habitats

These cities have demonstrated successful efforts to restore and naturalize municipal estuary shorelines, enhancing ecosystem services, biodiversity, and community engagement.

More cities need to step up restoring their estuaries here are some of the larger cities in the United States built on estuaries; San Francisco, California: San Francisco Bay, Seattle, Washington: Puget Sound, New Orleans, Louisiana: Lake Pontchartrain, New York City, New York; Hudson-Raritan Estuary, Baltimore, Maryland: Chesapeake Bay, Seattle, Washington:

Puget Sound, Boston, Massachusetts: Boston Harbor, Miami, Florida: Miami River, San Diego, California: San Diego Bay, St. Louis, Missouri: Mississippi River, Portland, Oregon: Willamette River Estuary, Mobile, Alabama: Mobile Bay, Oakland, California: San Francisco Bay

Carbon Sequestration

Our estuaries have several ways they sequester carbon. This contributes to the uniqueness of estuaries in some regions. Climate is definitely a factore yet, across the United States we have many opportunities to restore including carbon sequestration. As we work on the project goals we should not leave out the value of carbon sequestration.

Estuaries are valuable for carbon sequestration due to their ability to:

- 1. Sequester carbon in soils: Estuarine soils can store carbon for thousands of years, making them an important carbon sink.
- 2. Support carbon-absorbing vegetation: Estuaries are home to vegetation like mangroves, salt marshes, and seagrasses that absorb carbon dioxide through photosynthesis.
- 3. Protect and preserve carbon-rich wetlands: Estuaries often include wetlands like mudflats and salt marshes that are rich in carbon and require protection.
- 4. Support marine life that absorbs carbon: Estuaries are home to marine life like oysters and mussels that absorb carbon as they grow.
- Provide natural barriers against climate change: Estuaries can act as natural barriers against storm surges and sea level rise, protecting coastal communities and infrastructure.

Estuaries are estimated to sequester up to 50 times more carbon per hectare than tropical forests, making them a vital component in the global effort to mitigate climate change.

Some examples of estuaries that are important for carbon sequestration include:

- 1. Mangrove estuaries in Florida
- 2. Salt marsh estuaries in the southeastern United States
- 3. Seagrass estuaries in the Gulf of Mexico
- 4. Tidal marsh estuaries in the San Francisco Bay and Chesapeake Bay

Protecting and restoring estuaries is crucial for maintaining their carbon sequestration potential and supporting global efforts to mitigate climate change.

Tolet-to-Tap

Across all US EstuariesToilet-to-tap sewage treatment, also known as water recycling or wastewater reuse, can significantly help our estuaries in several ways:

Reduces Pollutants: Treats and removes pollutants, nutrients, and bacteria from wastewater, preventing them from entering estuaries and harming aquatic life.

Conserves Water: Reuses treated water for non-potable purposes, reducing the demand on freshwater sources and decreasing the amount of treated water discharged into estuaries.

Replenishes Aquifers: Injects treated water into groundwater basins, recharging aquifers and preventing saltwater intrusion into estuaries.

Decreases Nutrient Loading: Removes excess nutrients, like nitrogen and phosphorus, which can cause harmful algal blooms in estuaries.

Supports Sustainable Development: Allows for more efficient use of water resources, supporting economic growth while protecting estuarine ecosystems.

By implementing toilet-to-tap sewage treatment, we can help maintain healthy estuaries, preserve biodiversity, and ensure a more sustainable future.

Outfalls: What we should do and examples that have been done.

Across all of our estuaries, outfalls, which release treated or untreated wastewater into estuaries, can impact water quality. To improve estuary quality, consider the following measures:

- 1. Upgrade Wastewater Treatment:
 - a. Implement advanced treatment technologies to remove pollutants, nutrients, and pathogens.
 - b. Ensure treatment plants meet or exceed regulatory standards.
- 2. Reduce Stormwater Runoff:
 - a. Implement green infrastructure (e.g., green roofs, rain gardens) to absorb stormwater.
 - Separate stormwater and wastewater systems to prevent combined sewer overflows.
- 3. Install Outfall Screens:
 - a. Use screens or filters to capture trash, debris, and other pollutants before they enter estuaries.
- 4. Monitor and Maintain Outfalls:
 - a. Regularly inspect and maintain outfalls to prevent failures and unauthorized discharges.
 - b. Monitor water quality and adjust treatment processes as needed.
- 5. Consider Outfall Relocation or Elimination:
 - a. Evaluate possibilities for relocating outfalls to less sensitive areas or eliminating them altogether.
 - b. Explore alternative disposal methods, like underground injection or reuse.

By addressing outfalls and implementing these measures, we can significantly improve estuary water quality and protect these vital ecosystems.

Here are five examples of projects in the United States to reduce stormwater runoff into estuaries ^{10 11}:

- Mount Vernon-Belvedere Association: A 2015 project in Baltimore that received a \$10,795 grant to reduce stormwater runoff into the Chesapeake Bay.
- Friends of the North Fork Shenandoah River: A 2015 project in Virginia that received a \$43,615 grant to reduce stormwater runoff into the Chesapeake Bay.
- Baltimore Tree Trust: A 2015 project in Baltimore that received a \$35,000 grant to reduce stormwater runoff into the Chesapeake Bay.
- Second Chance, Inc.: A 2015 project in Baltimore that received a \$30,000 grant to reduce stormwater runoff into the Chesapeake Bay.
- Blue Water Baltimore: A 2015 project in Baltimore that received a \$74,826 grant to reduce stormwater runoff into the Chesapeake Bay.

Here are five examples of projects in the United States that have installed outfall screens to protect our estuaries:

- City of San Diego, California: Installed outfall screens at several locations along the San Diego Bay to prevent trash and debris from entering the estuary.
- New York City, New York: Implemented the "Citywide Program to Improve Water Quality"
 which included installing outfall screens to reduce combined sewer overflows into the
 Hudson River and New York Harbor.
- Baltimore City, Maryland: Installed outfall screens as part of the "Baltimore Harbor Water Quality Improvement Program" to reduce trash and pollutants entering the Patapsco River and Chesapeake Bay.
- City of Seattle, Washington: Installed outfall screens in several locations along the Duwamish River to prevent industrial pollutants and debris from entering Puget Sound.
- Miami-Dade County Outfall Screen Project: Installed outfall screens at 15 locations along the Miami River and Biscayne Bay to prevent trash and pollutants from entering the estuary.
- City of Fort Lauderdale Stormwater Outfall Screen Project: Installed outfall screens at 10 locations along the Intracoastal Waterway and Hillsboro River to reduce pollutants entering the estuary.
- Broward County Outfall Screen Retrofit Project: Upgraded existing outfalls with screens at 20 locations along the coast to improve water quality in the Broward County estuaries.
- City of St. Petersburg Stormwater Outfall Screen Project: Installed outfall screens at 5 locations along the Tampa Bay shoreline to reduce pollutants entering the estuary.
- Lee County Outfall Screen Installation Project: Installed outfall screens at 12 locations along the Caloosahatchee River and Estero Bay to improve water quality in the Lee County estuaries.

These projects demonstrate the effectiveness of outfall screens in reducing pollutants and protecting estuaries.

Here are examples of projects that have eliminated outfalls into United States estuaries 12:

 Albemarle-Pamlico National Estuary Program (APNEP): This project mapped 138,741 acres of submerged aquatic vegetation in the Albemarle-Pamlico estuary, spanning

- across North Carolina and Virginia. The data gathered from this project helps planners avoid development impacts on vulnerable estuarine areas.
- Barataria-Terrebonne National Estuary Program (BTNEP): This project in Louisiana involved planting trees in Grand Isle and growing out woody species that provide shelter for Neotropical songbirds. The project aimed to establish a chenier ridge and adjacent coastal marsh habitats.
- Coastal Bend Bays and Estuaries Program (CBBEP): This project in Texas focused on protecting and restoring habitats for critical species. The CBBEP purchased land parcels that provide nesting grounds and habitats for waterbirds and shorebirds.
- Maryland Coastal Bays Program (MCBP): This project in Maryland involved reclaiming a sand mine and converting it into a wetland. The project also involved adding control structures that reconnected the stream to its floodplain.
- Morro Bay National Estuary Program (MBNEP): This project in California involved removing man-made structures that impede fish migration upstream. Their work resulted in enhanced access to 6.29 miles of stream for steelhead and other fish species.
- Miami: Miami has eliminated several outfalls into Biscayne Bay as part of its "Biscayne Bay Watershed Management Plan". The city has also implemented a comprehensive stormwater management system to reduce pollutants entering the bay.
- Fort Lauderdale: Fort Lauderdale has eliminated several outfalls into the Intracoastal Waterway and Hillsboro River as part of its "Stormwater Master Plan". The city has also implemented a "Green Infrastructure Plan" to reduce stormwater runoff.
- St. Petersburg: St. Petersburg has eliminated several outfalls into Tampa Bay as part of its "Tampa Bay Watershed Management Plan". The city has also implemented a "Stormwater Management System" to reduce pollutants entering the bay.
- Tampa: Tampa has reduced several outfalls into Hillsborough Bay as part of its "Hillsborough Bay Watershed Management Plan". The city has also implemented a "Stormwater Management System" to reduce pollutants entering the bay.

These cities have implemented various measures such as stormwater treatment systems, green infrastructure, and outfall removals to reduce pollutants entering their estuaries, improving water quality and protecting the environment.

Key Species

When it comes to improving water quality in estuaries across the United States, focusing on key species can have a significant impact. Here are some of the best species to concentrate on:

- 1. Oysters: Oysters are natural water filters, removing pollutants and sediments from the water. Restoring oyster reefs can significantly improve water quality.
- Seagrasses: Seagrasses absorb excess nutrients, reduce sedimentation, and provide habitat for marine life. Protecting and restoring seagrass beds is crucial for estuarine health.
- 3. Salt Marsh Plants: Salt marsh plants like Spartina and Juncus help stabilize sediments, filter pollutants, and provide habitat for marine species. Restoring salt marshes can improve water quality and reduce erosion.

- Mangroves: Mangroves provide habitat for marine life, stabilize sediments, and filter
 pollutants. Protecting and restoring mangrove forests is essential for estuarine health in
 tropical regions.
- 5. Shellfish: Shellfish like mussels, clams, and scallops are indicator species for water quality. Monitoring their populations and health can help identify areas for improvement.
- 6. Fish: Fish like salmon, striped bass, and mullet are important indicators of estuarine health. Protecting their habitats and ensuring healthy populations can indicate improved water quality.
- 7. Phytoplankton: Phytoplankton are the base of the aquatic food web and play a crucial role in absorbing excess nutrients. Monitoring phytoplankton populations can help identify nutrient pollution issues.

By focusing on these species and their habitats, conservation efforts can have a positive impact on water quality in estuaries across the United States.

Standards for evaluating and monitoring estuaries across the United States.

Several standards and frameworks for evaluating and managing estuaries across the country have been developed. Some of the key standards and frameworks include:

- 1. Clean Water Act (CWA): Sets standards for water quality, including criteria for dissolved oxygen, pH, and other parameters.
- 2. National Estuary Program (NEP): Provides a framework for evaluating and managing estuaries, including criteria for water quality, habitat, and living resources.
- 3. Estuarine Water Quality Standards: Developed by the EPA, these standards provide guidelines for evaluating water quality in estuaries.
- Habitat Quality Index: Assesses habitat quality based on factors like vegetation, substrate, and water quality.
- 5. Benthic Index: Evaluates the health of benthic communities, such as sediment-dwelling organisms.
- 6. Water Quality Index: Combines multiple water quality parameters into a single score.
- 7. National Oceanic and Atmospheric Administration (NOAA): Provides guidelines for evaluating estuarine health, including criteria for water quality, habitat, and living resources.
- 8. Environmental Protection Agency (EPA): Sets standards for water quality, pollution control, and ecosystem protection.
- 9. Coastal and Estuarine Water Quality Monitoring: A framework for monitoring water quality in coastal and estuarine areas.
- 10. State-specific standards: Many states have developed their own standards and frameworks for evaluating and managing estuaries.

These standards and frameworks help ensure a comprehensive approach to evaluating and managing estuaries across the United States, considering physical, chemical, and biological parameters.

Conclusion

While regional differences exist, estuaries across America share a common foundation in their ecological functions, challenges, and benefits. Recognizing these similarities can facilitate knowledge sharing, collaborative management, and effective conservation strategies, ultimately enhancing the health and resilience of estuaries nationwide.

Recommendations

- Establish a national estuary network for knowledge sharing and coordination
- Develop standardized monitoring and assessment protocols
- Support collaborative research and restoration initiatives
- Prioritize agricultural runoff reduction and urban planning strategies
- Encourage sustainable industrial practices and fishing management
- Improve septic system maintenance and upgrade municipal sewage treatment facilities
- Reduce microplastic pollution through increased recycling, biodegradable alternatives, and improved waste management
- Implement sustainable drinking water management practices to protect freshwater lenses and natural springs

By acknowledging the unity of estuaries and addressing the leading contributors to declining estuary quality, including human impact on freshwater lenses and

References and Resources

- 1. https://estuaries.org/about/
- 2. Coastal Restoration & Estuary Resources ~ Restore America's Estuaries
- 3. Estuary Science ~ What is an Estuary? ~ Restore America's Estuaries
- 4. Restore America's Estuaries
- 5. Estuaries and the National Estuary Program | US EPA
- 6. Northeast Florida Estuarine Restoration Team (NERT) Regional Approach to Restoration | Florida Department of Environmental Protection
- 7. Estuary Habitat | NOAA Fisheries
- 8. S.C. Sea Grant Consortium S.C. Sea Grant Consortium (scseagrant.org)
- 9. Our Changing Estuaries (arcgis.com)
- 10. https://www.epa.gov/archive/epa/newsreleases/fifteen-projects-unveiled-green-local-communities-create-jobs-and-manage-stormwater.html

- 11. https://www.estuarypartnership.org/our-work/stormwater-projects
- 12. https://www.epa.gov/nep/how-national-estuary-programs-address-habitat-loss-and-degradation

13.